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We show that the thermal properties of periodic lattice systems can be approximated to that of a finite cluster
with appropriate boundary conditions which include a modified Hamiltonian for the boundary variables.
Imposing lattice invariance on the correlation of the local site variables is sufficient to obtain the free param-
eters of the boundary Hamiltonian. The degree of accuracy of the calculation depends on the interaction range
allowed in the boundary Hamiltonian and the range up to which the correlation of the site variables are made
lattice invariant. The Bethe approximation can be considered a trivial case of this general method for clusters
of one lattice site. The reliability of the method is demonstrated with the results obtained for the two-
dimensional Ising model, where a cluster of four spins and invariance conditions up to second neighbors is
sufficient to reproduce some nonuniversal thermal properties of the model with an accuracy comparable or
better than other more complex numerical methods.
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I. INTRODUCTION

Among the many Hamiltonian models of phase transitions
very few have been solved exactly, and the use of efficient
approximation methods is crucial; they have to be accurate
enough and maintain the computational effort under some
practical limits. A considerable effort has been devoted to
this task: from the easy to implement mean-field theory to
sophisticated series expansions and renormalization tech-
niques, going through Monte Carlo or molecular dynamic
simulations[1,2]. Those approaches differ on the complexity
of calculations and accuracy of the results, but from a very
basic point of view some of them share common features.
Monte Carlo simulations and mean-field calculations, for in-
stance, look completely different, but the most relevant dis-
tinction is the way in which the pertinent statistical sums are
performed. In both cases the infinite system is approached by
a finite cluster, appropriate boundary conditions are used,
and thermodynamic magnitudes are calculated. Often, within
the mean-field approach, the number of relevant thermody-
namic variables in the cluster is so small that sums may be
calculated within almost any desired accuracy, and the best-
suited boundary conditions correspond to a fixed self-
consistent value of the order parameter. In Monte Carlo
simulations, the number of degrees of freedom is so large
that the sums must be calculated by means of a statistical
sampling in the phase space of the system, and usually, pe-
riodic boundary conditions are implemented, although there
is no conceptual problem to use self-consistent fields at the
boundary of a Monte Carlo simulation[3,4]. In the simplest
version of mean-field theory[5], correlations among the

boundary variables and correlations between the cluster and
boundary are neglected. The first step towards the use of
more adequate boundary conditions—the boundary variables
are allowed to fluctuate—correspond to the well-known Be-
the [6] approximation, where correlation effects are implic-
itly taken into account. On the other hand, periodic boundary
conditions overestimate the correlations among all the vari-
ables, especially when the correlation length and the size of
the system are of the same order of magnitude. Hence the
discussion may be rephrased in the following way: Which
are the best boundary conditions that lead the variables in a
finite cluster to behave as if they were in the infinite ideal
system?

Significant efforts have been made in the development of
cluster-based methods. Starting from the mean-field or Bethe
approximation, the most straightforward approach consists in
increasing the size of the cluster, maintaining the character-
istics of the boundary conditions. Unfortunately, the transla-
tional invariance of the lattice is violated[7], and the con-
vergence to the thermodynamic limit is slow. The
convergence problem may be highly improved[8] analyzing
the results by the coherent-anomaly method[9–15], that al-
lows us to extract nonclassical critical exponents and transi-
tion temperatures from convergent series of mean-field ap-
proximations. The lack of periodicity has been studied in
Ref. [7], and a different self-consistent mean-field equation
has been proposed. This approach predicts with great accu-
racy the transition temperatures in low dimensional spin sys-
tems. Other approximations such as the effective-field model
[16] and its extensions[17–19], the double-chain approxima-
tion [20], or the cluster-variation method[21–25] are de-
signed to treat correlations more accurately, and constitute a
significant improvement over the simple Weiss theory. One
of the drawbacks of the usual methods is that they are de-*Electronic address: wmpetali@lg.ehu.es
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signed to study discrete models, and their extension to con-
tinuous variables is often difficult or unfeasible. The different
kind of boundary conditions proposed in this work exhibit
two interesting features: first, as correlations are more accu-
rate, the statistical behavior of the finite system resembles
more closely that of the infinite one; second, its applicability
is, in principle, not restricted to discrete models.

The application of more complex effective couplings to
the boundary spins of a given cluster has also been studied
by Minami et al. in the multi-effective-field theory[26] from
the viewpoint of the coherent anomaly method. Although the
present work is not focused as this one on universal quanti-
ties at the transition point but on the whole behavior of the
model within large temperature intervals, both methods are
somehow similar: the effective interactions go beyond
nearest-neighbor couplings, and the consistency equations
containn-body correlation functions. In this work, however,
the couplings are added in a systematic manner, and more
crucial, the whole cluster is periodic within a given level of
accuracy. In Ref.[26] not all the symmetry equivalent
n-body correlation functions are forced to be equal, and the
cluster, from this viewpoint, does not satisfy the periodicity
conditions.

Although the basis of the method is completely general,
its foundations(Sec. II) and application(Sec. III) are ex-
plained in the context of the two-dimensional Ising model in
a square lattice. This system has been chosen for practical
reasons. On the one hand, the model is simple compared to
other models of cooperative phenomena, and the calculation
of the statistical averages is not very time consuming. On the
other hand, the model is rich enough to exhibit a phase tran-
sition at finite temperature, and the behavior of several sta-
tistical magnitudes has been calculated exactly[27–29].
These exact solutions give us an appropriate basis to estimate
the accuracy of the method in calculations of nonuniversal
quantities such as critical temperatures and maximum values
of connected correlation functions.

II. PERIODICITY AND BOUNDARY CONDITIONS

In the absence of external field, the Hamiltonian of the
Ising model in a two-dimensional square lattice may be ex-
pressed as

H = − Jo
ki,jl

sis j ,

where the sum extends to all the nearest-neighbor pairs and
the available values of the spin variables ares= ±1. We can
divide the whole system in three sets of spins(Fig. 1): a
small cluster of spins(C spins,si

c[C), the spins that interact
with the cluster, located at the boundary(B spins,si

b[B),
and the spins that are neither in the cluster, nor in its bound-
ary, i.e., the rest of the spins(R spins,si

r [R). The number of
spins at the boundary depends on the range of the interac-
tions, and in this case only the first neighbors of the cluster
spins have to be taken into account. The density matrix of the
whole system is given by

rshsc,sb,srjd =
1

Z
expf− bHshsc,sb,srjdg, s1d

where Z=tr expf−bHg is the partition function, and
hsc,sb,srj represents a given statistical configuration of the
spins. The reduced density matrix for the cluster and bound-
ary spins may be obtained taking the trace over the spins of
the rest of the systemsRd:

rshsi
c,si

bjd =
1

Z
trR expf− bHg. s2d

Let us create a defect by removing all the interactions
between the cluster and boundary spins; the cluster becomes
isolated from the boundary spins and the rest of the system,
and periodicity is lost. The reduced density matrix for theC
andB spins may be decomposed as

r8shsc,sbjd = rc8shs
cjdrB8shsbjd, s3d

where the primes refer to the defective system, andrC8 andrB8
denote the reduced density matrix of theC and B spins,
respectively:

rC8 shscjd =
1

ZC8
expf− bHCshscjdg, s4d

rB8shsbjd =
1

ZB8
trR expf− bHB,Rshsb,srjdg. s5d

HCshscjd is the part of the Hamiltonian that contains only the
interactions among theC spins(nearest neighbor pairs of the
form scsc), andHB,Rshsb,srjd corresponds to the remaining
interactions after isolating the two subsystems(nearest
neighbor pairs of typesbsb, sbsr, andsrsr).

If the cluster is small,rC8 shscjd may be easily calculated.
On the other hand, inrB8shsbjd the effect of theR spins is
implicitly included, and, due to the lack of periodicity, its
calculation is more complex than the calculation of the den-
sity matrix of the periodic infinite lattice[Eq. (1)]. The prob-

FIG. 1. Schematic view of a two-dimensional Ising system in a
square lattice. Filled circles correspond to the spins in the cluster
ssi

cd. The boundary spinsssi
bd are in the shadowed region, and the

open circles correspond to the rest of the infinite systemssi
rd.
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ability densities of the cluster and boundary spins in the pe-
riodic [Eq. (2)] and defective[Eq. (3)] systems may be
related according to

rshsc,sbjd = A−1r8shsc,sbjd expf− bHB−Cshsc,sbjdg, s6d

where HB−C corresponds to the interactions between the
B and C spins—those that are absent in the defective
system—andA is a normalization factor:

A = trC,Br8shsc,sbjd expf− bHB−Cshsc,sbjdg.

Using Eqs.(3) and (4) in Eq. (6), we obtain the following
exact expression for the infinite ideal lattice:

rshsc,sbjd = rB8shsbjd

3
1

AZC8
exp{− bfHCshscjd + HB−Cshsb,scjdg} ,

s7d

establishing a relationship between the reduced density ma-
trix of the boundary spins in the defective lattice and the
exact reduced density matrix of boundary and cluster spins in
the ideal lattice. Thus the knowledge of the exact density
matrix rB8shsbjd of the defective system is enough to obtain
the exact probability density of the infinite periodic lattice;
but, as mentioned above, due to the lack of periodicity, any
calculation in the defective system should at least be as dif-
ficult as its counterpart in the infinite periodic lattice.

The main difficulty to apply Eq.(6) in statistical calcula-
tions relies on having a good approximation for the statistical
distribution of the boundary spins in the defective system.
One can generate a trial density matrixrB,t8 shsbjd and esti-
mate the goodness of the choice. We propose a simple crite-
rion based on the periodicity. According to Eq.(6) the exact
rB8shsbjd density of the defective system gives the exact den-
sity matrix of both cluster and boundary spins in the infinite
periodic system—a periodic density matrix. Therefore the
more reliable the trial distribution is, the “more periodic” is
the density matrix of the cluster and boundary spins calcu-
lated by Eq.(6). The generation of the trial density matrix
and the estimation of the periodicity are explained below.

A. Probability density of the boundary spins

An appropriate probability density distribution for the
boundary spins must be parametrized in a simple form to
allow a practical use of Eq.(6), and must contain the neces-
sary ingredients to mimic the effect of the part of the system
that is not explicitly taken into account—theR spins. A
straightforward approach consists of using a trial Hamil-
tonian for the boundary spins, and generating the probability
density distribution by

rB,t8 shsbjd =
1

Zt8
expf− bHt

bshsbjdg. s8d

In its simplest formHt
b may be composed of interactions

with effective fields, and quadratic couplings between pairs
of spins[30]:

Ht
b = − Jo

ki,jl
si

bs j
b − o

i

hisi
b − o

i,j
Ki,jsi

bs j
b, s9d

where the first summation corresponds to the part of the total
Hamiltonian that involves interactions between nearest
neighbors at the boundary, and in the third term there is no
restriction on the distance between the spin pairs. The Hamil-
tonian parameters may be chosen systematically, first of all
the effective fieldsshid, and afterwards, interactions covering
increasing distancessKi,jd may be taken into account: cou-
plings between first neighbors, second neighbors, and so on.
The number of independent parameters depends on the clus-
ter size and symmetry, and the degree of periodicity that is
intended to be fulfilled. As explained below, the achievement
of a better degree of periodicity corresponds to an increase in
the number of parameters in the trial Hamiltonian; for a low
degree of periodicity most of theKi,j may be absent and only
short distance couplings are needed.

Equations(6) and (9) may be written in a more practical
and intuitive way. The trial density for spins in the boundary
and cluster is

rtshsc,sbjd =
1

Zt
expf− bsH0 + DHdg, s10d

where H0 corresponds to the part of the Hamiltonian that
does not contain spins of the rest of the system:

H0 = − Jo
ki,jl

sis j ∀ s ¹ R, s11d

DH contains the parametrized interactions that should repro-
duce the effect of the rest of the system:

DH = − o
i

hisi
b − o

i,j
Ki,jsi

bs j
b, s12d

andZt is a normalization factor to have trrt=1.
According to Eq.(10), the average of any observablesOd

should be calculated by

kOl = tr Ort. s13d

B. Periodicity constraints

The degree of periodicity of a small part of an infinite
system may be classified hierarchically. The zeroth order ap-
proximation corresponds to the consistency of the average
values of all the boundary and cluster spins. This may be
expressed by means of the following system of nonlinear
equations:

o = ks1
cl = ks2

cl = ¯ = ksn
cl

= ks1
bl = ks2

bl = ¯ = ksm
b l,

wheren andm are the number of spins in the cluster and in
the boundary, respectively.

Fluctuations of all the spins must be also equal, but in the
case of the Ising model we haveks2l=1 and this requirement
is automatically satisfied.

The first order approximation should be related to the cor-
relations between nearest neighbors:
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Gs1d = ksi
cs j

cl = ksi
bs j

bl = ksi
cs j

bl

for all nearest-neighbor pairs.
This procedure can be generalized to any distance within

the boundary-cluster systemsGs2d ,Gs3d ,…d [31] until the
achievement of the desired level of accuracy. The number of
independent equations above depends on the specific struc-
ture and symmetry of the cluster, and on the parametrization
of the trial Hamiltonian. We have adopted the following
practical procedure: once the degree of approximation is de-
cided, new interaction parameters have been added one by
one to the trial Hamiltonian until the system of nonlinear
consistency equations is satisfied.

III. APPLICATION TO THE SQUARE LATTICE

Three different clusters have been studied: one single
spin, two neighbor spins, and a square cluster of four spins.

A. Single spin cluster

For the single spin case(Fig. 2), the four boundary spins
are symmetry equivalent. All the correlation functions be-
tween spins at the same distances are equal by symmetry,
and the periodicity condition can only be applied to the mean
values of the central and surrounding spinsskscl=ksbld. As
there are no first neighbors among the boundary spins, the
trial Hamiltonian may be expressed in terms of a single ex-
ternal field:

Ht = H0 + DH0 = − sJs1
c + hdo

i=1

4

si
b.

Thus there is a single nonlinear equation in terms of a single
parametershd, and the method leads to the Bethe approxima-
tion [6].

B. Two spin cluster

For the two spin cluster(Fig. 3) both spins in the cluster
are symmetry equivalentsS1=ks1

cl=ks2
cld and among the six

boundary spins two classes may be distinguished:

o2
= ks1

bl = ks2
bl = ks4

bl = ks5
bl,

o3
= ks3

bl = ks6
bl.

The periodicity condition in zeroth order leads to

o1
= o2

= o3
. s14d

The simplest trial Hamiltonian to express the probability
density of the boundary spins is

Ht = H0 + DH0

with

H0 = − Jfs1
cs2

c + s1
bs2

b + s4
bs5

b + s1
css1

b + s5
b + s6

bd

+ s2
css2

b + s3
b + s4

bdg

and

DH0 = − h1ss1
b + s2

b + s4
b + s5

bd − h2ss3
b + s6

bd.

The two effective fieldsh1 and h2 must be obtained to
solve the system of Eq.(14) (two independent nonlinear
equations in terms of two effective unknown fields).

One can improve the periodicity of the system by taking
into account the correlations between nearest neighbors. Ac-
cording to Fig. 3 these correlations may be grouped into four
symmetry independent sets:

G1
s1d = ks1

cs2
cl,

G2
s1d = ks1

bs2
bl = ks4

bs5
bl,

G3
s1d = ks1

cs6
bl = ks2

cs3
bl,

FIG. 2. Schematic representation of the trial model for a single
spin cluster. It is equivalent to the Bethe approximation.

FIG. 3. Approximations for the two spin cluster. Top: couplings
and external fields for the zeroth order approximation. Two inde-
pendent effective fields(h1 andh2) are needed. Bottom: first order
approximation; three couplings(K1, K2, and K3) are included to
make the correlations between first neighbors consistent. The same
model is valid to extend the periodicity up to third order.
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G4
s1d = ks1

cs1
bl = ks1

cs5
bl

= ks2
cs2

bl = ks2
cs4

bl.

Thus the three new consistency equations needed to obtain
the first order approximation are

G1
s1d = G2

s1d = G3
s1d = G4

s1d. s15d

These three new equations are not independent of the rela-
tions in Eq.(14); the solutions for the zeroth order approxi-
mation also giveG2

s1d=G4
s1d. However, the simultaneous ac-

complishment of Eqs.(14) and (15) (five nonlinear
equations) requires the inclusion of three quadratic couplings
(Fig. 3), and the following terms have to be added to the trial
Hamiltonian:

DH1 = − K1ss1
bs2

b + s4
bs5

bd − K2fs3
bss2

b + s4
bd + s6

bss1
b + s5

bdg

− K3fs3
bss1

b + s4
bd + s6

bss2
b + s4

bdg.

K1 adds an extra contribution toJ, andK2 and K3 increase
the correlation between second and third neighbors in the
boundary.

The next approximation order may be achieved by taking
into account the correlations between second neighbors, that
can be grouped according to symmetry as

G1
s2d = ks1

cs2
bl = ks1

cs4
bl = ks2

cs1
bl = ks2

cs5
bl,

G2
s2d = ks6

bs1
bl = ks2

bs3
bl = ks3

bs4
bl = ks5

bs6
bl.

But the new relationsG1
s2d=G2

s2dd necessary to extend the
periodicity to this level is not independent and it is already
fulfilled by the solutions of the first order approximation
[Eqs. (14) and (15)]. The same remark applies to the corre-
lations between third neighbors. The consistency equations
are not independent, and for the same trial Hamiltonian the
following relation is satisfied:

G1
s3d = G2

s3d,

where the two symmetry independent correlations are

G1
s3d = ks1

cs3
bl = ks2

cs6
bl,

G2
s3d = ks1

bs5
bl = ks2

bs4
bl.

Therefore the trial HamiltonianHt=H0+DH0+DH1 also
corresponds to the third order approximation, that is, the pe-
riodicity extends up to the correlations between third neigh-
bors. The rest of pair andn-body correlation functions do not
satisfy their corresponding consistency equations.

C. Four spin cluster

The eight boundary spins are equivalent by symmetry
(Fig. 4), and the only condition about the average values of
all the spins isS=kscl=ksbl. The simplest trial Hamiltonian
contains a single external field:

Ht = H0 + DH0 = H0 − ho
i=1

8

si
b.

The first order approximation includes correlations be-
tween first neighbors that may be grouped into three symme-
try independent sets

G1
s1d = ks1

cs2
cl = ks2

cs3
cl = ks3

cs4
cl = ks4

cs1
cl,

G2
s1d = ks1

cs1
bl = ks1

cs8
bl = ks2

cs2
bl = ks2

cs3
bl = ks3

cs4
bl = ks3

cs5
bl

= ks4
cs6

bl = ks4
cs7

bl,

G3
s1d = ks1

bs2
bl = ks3

bs4
bl = ks5

bs6
bl = ks7

bs8
bl

and the consistency equations for the correlations are

G1
s1d = G2

s1d = G3
s1d.

The trial Hamiltonian for the boundary spins isHt=H0
+DH0+DH1, where the new contribution is(Fig. 4)

DH1 = − K1ss1
bs2

b + s3
bs4

b + s5
bs6

b + s7
bs8

bd

− K2ss8
bs1

b + s2
bs3

b + s4
bs5

b + s6
bs7

bd.

Up to this degree of approximation, a system of three non-
linear equations must be solved in terms ofh, K1, andK2.

Correlations between second neighbors may be grouped
into three classes:

G1
s2d = ks1

cs3
cl = ks2

cs4
cl,

G2
s2d = ks1

cs2
bl = ks1

cs7
bl = ks2

cs1
bl = ks2

cs4
bl = ks3

cs3
bl = ks3

cs6
bl

= ks4
cs5

bl = ks4
cs8

bl,

G3
s2d = ks8

bs1
bl = ks2

bs3
bl = ks4

bs5
bl = ks6

bs7
bl

giving two more equations:

G1
s2d = G2

s2d = G3
s2d.

Nevertheless, all the equations are not independent and it is
enough to add a single coupling to extend the periodicity of
correlations to second neighbors(Fig. 4):

DH2 = − K3ss1
bs3

b + s2
bs4

b + s3
bs5

b + s4
bs6

b + s5
bs7

b + s6
bs8

b

+ s7
bs1

b + s8
bs2

bd.

IV. RESULTS AND DISCUSSION

Once the order of the approximation and model couplings
have been chosen, the nonlinear equations can be solved by

FIG. 4. The square cluster. Left: couplings and external fields
for the zeroth order approximation. Middle: first order approxima-
tion; correlations between first neighbors are equal. Right: neces-
sary couplings to extend the periodicity to second neighbors.
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any standard numerical technique. A summary of the results
appears in Table I: transition temperatures and values of the
connected correlation functionssGc

s1,2d=ks2l−ksl2d between
first and second neighbors at the critical temperature. Al-
though the present method does not contain the mean-field
approximation as a particular case, its transition temperature
is cited for comparison. The computational effort for each
case is related with two magnitudes. On the one hand the
calculation of the statistical averages[Eq. (13)] depends on
the total number of spinssNd needed to describe a statistical
configuration, that is, the size of the cluster. On the other
hand, the number of independent nonlinear equations to be
solved sMd increases as the degree of periodicity is im-
proved, or the symmetry of the cluster is lowered. The num-
ber of iterations needed to solveM nonlinear equations de-
pends on the behavior of the functions, the required
accuracy, and the starting point. In the present calculations,
about 10–20 iterations were enough, and in each iteration the
equations are evaluatedM +1 times. For each evaluationM
+2 statistical sums over all the spins must be done: one for
the partition function, andM +1 for the traces of Eq.(13). As
the number of terms added up in the traces is 2N for Ising
spins, the time needed to perform a calculation at a given
temperature is proportional to 10sM +1dsM +2d2N. Thus the
system size is the magnitude that mainly limits the complex-
ity of the calculations. For instance, the typical computer
time needed to perform a single temperature calculation for
the caseM =4 andN=12 in a 466-MHz Compaq Alpha EV6
workstation is about several seconds.

The influence of the consistency of the correlations is re-
markable. For instance, in the case of the four spin cluster,
the error in the transition temperature goes down from 25%
in the zeroth-order case to 7% in the first order approxima-
tion, and the heights of the peaks in the connected correlation
functions show a similar behavior. The obtained transition
temperatures in Table I, particularly the best result of
kBTc/J=2.351 for the four spin cluster, can be compared
with the results of some of the approximation methods pro-

posed in the literature. The effective-field method with cor-
relations of Taggart[17], double-chain approximation[20],
modified effective-field approach[18], and expanded Bethe-
Peierls approximation[19] give kBTc/J=2.680, 2.500, 2.576,
and 2.486, respectively. The result of Galam[7] is exception-
ally accurate:kBTc/J=2.273. Unfortunately, the application
of the method proposed in Ref.[7] seems to be restricted to
spin systems, and there is no obvious way to establish a
hierarchical approximation scheme. The cluster-variation
method in the Tanoji[24,25] approximation, where 44 varia-
tional parameters are needed, giveskBTc/J=2.346, compa-
rable with our result. The transition temperature in mean-
field approximation, applying self-consistency to the central
spins of a cluster of 181 spins iskBTc/J=2.360[8]. Also, the
best transition temperature of the multi-effective-field theory
(16 spins and 5 effective fields) is kBTc/J=2.357 [26]. Our
slightly better result using a smaller cluster might be related
to a more accurate treatment of the periodicity.

Figure 5 shows the dependence on temperature of the
order-parameter and connected correlation functions between
first neighbors for the Onsager’s exact solution, Bethe ap-
proximation, and the three studied cases of the four spin
cluster. The difference between the Bethe approximation and
zeroth order approximation of the four spin cluster is just the
number of spins involved in the calculation. The effect of
increasing the size of the cluster is much less important than
the improvement obtained by taking the periodicity of the
correlations into account(compare the curves corresponding
to the Bethe, zeroth, and first order approximation). The
comparison between the results of the two and four spin
clusters is not so direct. If we consider the zeroth approxi-
mation for the two and four spin clusters the transition tem-
peratures and correlation functions for the smaller cluster are
better. The reason for this apparent inconsistency is related to
the symmetry of the cluster. As the two spin cluster is less
symmetric, two effective fields are necessary to make all the
mean values of the spins equal, while in one and four spin
clusters one model parameter is enough. Thus it can be in-
ferred that, within a given symmetry, as the consistency of

TABLE I. Results for different models and approximations.N is the number of spins involved in the
calculation of the trace.M is the number of nonlinear equations involved.kBTc/J is the transition tempera-
ture. Gc

s1dsTcd and Gc
s2dsTcd are the values of the connected correlation functions between first and second

neighbors, respectively, at the transition point.

Model N Approx. M kBTc/J Gc
s1dsTcd Gc

s2dsTcd

Mean field 1 1 4.000

Single spina 5 0 1 2.885 0.333 0.111

Two spin 8 0 2 2.770 0.380b 0.191b

1–3 5 2.418 0.563 0.445

Four spin 12 0 1 2.831 0.274b 0.138b

1 3 2.428 0.559 0.439b

2 4 2.351 0.607 0.501

Exactc 2.269 0.707 0.637

aIt is equivalent to the Bethe approximation.
bAs the periodicity requirements do not force the consistency of these correlation functions, the average
values are shown.
cFrom Refs.[27,29].
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periodicity is improved, the evolution of the magnetization
tends to the exact values. In all the cases the magnetization
shows mean-field critical exponents; an analysis of the co-
herent anomaly, as in Ref.[8], could give a proper estimation
of the ability of the method to be used in the extrapolation of
nonclassical critical exponents. Although in this work the
method has been used to study a simple test system, the
universality of its foundations and the results obtained are

encouraging to test its application in more sophisticated
Hamiltonian models.
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